domingo, 7 de abril de 2013


Ejercicios 













Suma de resistencias 


Dos resistencias están en serie si por ellas pasa exactamente la misma corriente. Resistencias en serie se suman para obtener una resistencia equivalente: Req = R1 + R2.

Dos resistencias están en paralelo si sobre los terminales correspondientes de éstas se establece un mismo voltaje. La resistencia equivalente de dos resistencias es el producto de éstas dividido por la suma de ambas: Req = (R1× R2)/(R1+R2).







Resistencia eléctrica 


es una medida de su oposición al paso de corriente y es directamente proporcional a la longitud e inversamente proporcional a su sección transversal:
 R=p l/s
En donde ρ es el coeficiente de proporcionalidad o la resistividad del material.

 La unidad de la resistencia en el Sistema Internacional de Unidades es el ohmio (Ω). Para su medición en la práctica existen diversos métodos, entre los que se encuentra el uso de un ohmímetro. Además, su cantidad recíproca es la conductancia, medida en Siemens.

La resistencia de cualquier objeto depende de su geometría y de su coeficiente de resistividad a determinada temperatura: aumenta conforme es mayor su longitud y disminuye conforme aumenta su grosor o sección transversal.
Además, de acuerdo con la ley de Ohm la resistencia de un material puede definirse como la razón entre la caída de tensión y la corriente en dicha resistencia, así:1
R=v/i
Donde R es la resistencia en ohmios, V es la diferencia de potencial en voltios e I es la intensidad de corriente en amperios.




Voltimetro y amperimetro




Voltimetro y amperimetro


Un voltímetro es un instrumento que sirve para medir la diferencia de potencial entre dos puntos de un circuito eléctrico.

CLASIFICACION DE LOS VOLTIMETROS 

  • Voltimetro eletromecanicos: Estos voltímetros, en esencia, están constituidos por un galvanómetro cuya escala ha sido graduada en voltios. Existen modelos para corriente continua y para corriente alterna.

  • Voltimetros vectoriales: Se utilizan con señales de microondas. Además del módulo de la tensión dan una indicación de su fase. Se usa tanto por los especialistas y reparadores de aparatos eléctricos, como por aficionados en el hogar para diversos fines; la tecnología actual ha permitido poner en el mercado versiones económicas y al mismo tiempo precisas para el uso general. Son dispositivos presentes en cualquier casa de ventas dedicada a la electrónica.

  • Voltimetros digitales: Dan una indicación numérica de la tensión, normalmente en una pantalla tipo LCD. Suelen tener prestaciones adicionales como memoria, detección de valor de pico, verdadero valor eficaz (RMS), autorrango y otras funcionalidades.
    El sistema de medida emplea técnicas de conversión analógico-digital (que suele ser empleando un integrador de doble rampa) para obtener el valor numérico mostrado en una pantalla numérica LCD.

    USO DEL VOLTIMETRO

Voltimetro y amperimetro (parte1)



Voltimetro y amperimetro

Un amperímetro es un instrumento que sirve para medir la intensidad de corriente que está circulando por un circuito eléctrico. Un microamperímetro está calibrado en millonésimas de amperio y un miliamperímetro en milésimas de amperio.

que en la actualidad los amperímetros utilizan un conversor analógico/digital para la medida de la caída de tensión en un resistor por el que circula la corriente a medir. La lectura del conversor es leída por un microprocesador que realiza los cálculos para presentar en un display numérico el valor de la corriente eléctrica circulante.

TIPOS:
  • Amperimetro electromagnético: Están constituidos por una bobina que tiene pocas espiras pero de gran sección. La potencia que requieren estos aparatos para producir una desviación máxima es de unos 2 vatios. Para que pueda absorberse esta potencia es necesario que sobre los extremos de la bobina haya una caída de tensión suficiente, cuyo valor va a depender del alcance que tenga el amperímetro. El rango de valores que abarca este tipo de amperímetros va desde los 0,5 A a los 300 A. Aquí no se pueden usar resistencias en derivación ya que producirían un calentamiento que conllevaría errores en la medida. Se puede medir con ellos tanto la corriente continua como la alterna. Siendo solo válidas las medidas de corriente alterna para frecuencias inferiores a 500 Hz. También se pueden agregar amperimetros de otras medidas eficientes.

  • Amperimetro electrodinamicos: Los amperímetros con sistema de medida "electrodinámico" están constituidos por dos bobinas, una fija y una móvil.

USO DE AMPERIMETRO 



Ley de Ohm




Ley de Ohm


Ley de ohmLa ley de Ohm dice que la intensidad que circula entre dos puntos de un circuito eléctrico es proporcional a la tensión eléctrica entre dichos puntos. Esta constante es la conductancia eléctrica, que es lo contrario a la resistencia eléctrica.

La intensidad de corriente que circula por un circuito dado, es directamente proporcional a la tensión aplicada e inversamente proporcional a la resistencia del mismo.
La ecuación matemática que describe esta relación es:

     I=GV=V/R


Donde, I es la corriente que pasa a través del objeto en amperios, V es la diferencia de potencial de las terminales del objeto en voltios, G es la conductancia en siemens y R es la resistencia en ohmios (Ω). Específicamente, la ley de Ohm dice que R en esta relación es constante, independientemente de la corriente.


Esta ley se cumple para circuitos y tramos de circuitos pasivos que, o bien no tienen cargas inductivas ni capacitivas (únicamente tiene cargas resistivas), o bien han alcanzado un régimen permanente. También debe tenerse en cuenta que el valor de la resistencia de un conductor puede ser influido por la temperatura.


Las Formulas para el poder llevar a cavo esta ley son: 



Circuito eléctrico (parte2)




CLASIFICACIÓN

Los circuitos eléctricos se clasifican de la siguiente forma:

   {\color{Blue}\mbox{Tipo de señal}}
   \quad
   \begin{cases}
      \mbox{Corriente continua} \\
      \mbox{Corriente alterna}
   \end{cases}

   {\color{Blue}\mbox{Tipo de régimen}}
   \quad
   \begin{cases}
      \mbox{Corriente periódica}   \\
      \mbox{Corriente transitoria} \\
      \mbox{Permanente}
   \end{cases}

   {\color{Blue}\mbox{Tipos de componentes}}
   \quad
   \begin{cases}
      \mbox{Eléctricos} \\
      \mbox{Electrónicos} \quad
      {\begin{cases}
         \mbox{Digitales}\\
         \mbox{Analógicos} \\
         \mbox{Mixtos}
      \end{cases}}
   \end{cases}

   {\color{Blue}\mbox{Tipo de configuración}}
   \quad
   \begin{cases}
      \mbox{Serie}    \\
      \mbox{Paralelo} \\
      \mbox{Mixto}
   \end{cases}

Existen varias leyes que rigen a cualquier tipo de circuito electro, mas solo nos enfocaremos en la "Ley fundamental de Ohm"; mas daremos una pequeñas definición de las otras leyes  

  • Ley de corriente de Kirchhoff: La suma de las corrientes que entran por un nodo deben ser igual a la suma de las corrientes que salen por ese nodo.
  • Ley de tensiones de Kirchhoff: La suma de las tensiones en un lazo debe ser 0.
  • Ley de Ohm: La tensión en una resistencia es igual al producto del valor dicha resistencia por la corriente que fluye a través de ella.
  • Teorema de Norton: Cualquier red que tenga una fuente de tensión o de corriente y al menos una resistencia es equivalente a una fuente ideal de corriente en paralelo con una resistencia.
  • Teorema de Thévenin: Cualquier red que tenga una fuente de tensión o de corriente y al menos una resistencia es equivalente a una fuente ideal de tensión en serie con una resistencia.

Origen de información